Query AW)

Processing B

in PostgreSQL OWER TO
mPeagrse:

Amit Langote, EDB

w EDB

Agenda

e Qverview

g 2
n example query

.+ Extensibility POWER TO

POSTGRES

//A\

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

Architecture

e Client-server model with a Postgres-specific wire protocol to exchange formatted messages

o https://www.postgresgl.org/docs/current/protocol.html
e Server accepts SQL commands as text strings from an authenticated client and returns rows of data in

binary or text format as result

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

https://www.postgresql.org/docs/current/protocol.html

Architecture

Client application [:

SQL (?
L

-
[
’ v ’ backend process backend process I
Raw parser
\ / Table/index access cs:gtsat I?) rgs
v methods
(] /
Parser/analyzer g} .
> T g 1 Storage, buffer]
’ \ ‘ X manager
Rewriter System r _ N User tables
- g caches Transaction, WAL,
- -~ N isolation J
J N o
Planner/optimizer
[
. g Stats, logging, other I
s ¥ N utilities
Executor Write-ahead
\ / Result Log
rOWSs J‘

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

Architecture

e Raw parser
o Using scanner and parser generated using GNU tools flex, bison, respectively
o Product:aList of RawStmt, the raw parse tree
e Parse/analyze
o Semantic analysis of raw parse tree: mapping object names to OIDs in the catalog, column names to
attribute numbers, etc.
o Product:aList of Query, the query tree
e Rewrite
o Expand views, rules

o Product:aList of Query, possibly containing multiple query trees

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

Architecture

e Planner/optimizer

o Create an optimal plan to execute the queries

o Product:aList of PlannedStmt, each containing the plan tree
e [Executor

o |nitialize and execute the plan tree

o Product: result rows delivered to the client over the wire in text/binary format

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

Architecture

SQL (5
L Client application [-
-
I
’ y text ’ backend process backend process '
Raw parser
\ / Table/index access sgtsat I?) ms
> v List of ngStmt methods 9
Parser/analyzer —_—
\ V. I
TTIst of Query ! Storage, buffer ,
- N manager
q Rewiter y System (T E——ET User tables
; caches ransaction, ,
§ ¢ List onue\ry isolation /
J L <
Planner/optimizer
I
\ Y. . |
List of PlannedStmt Stats, Iogg!ng, Sitel
s ¥ N utilities
Executor Write-ahead
L) text/binary Result Log
rows J

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

The query

SELECT orders.customer_id, SUM(order_lines.price) AS total_amount
FROM orders JOIN order_lines ON orders.id = order_lines.order_id
WHERE orders.order_date BETWEEN ‘2021-11-01" AND ‘TODAY’

GROUP BY 1;

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

Raw Parser

e Converts the query string into RawStmt, the AST (Abstract Syntax Tree) form.

e No on-disk state is referenced in the process, so no locks are yet taken.

RawStmt

SELECT orders.customer_id, SUM(order_lines.price) AS total_amount\ SelectStmt

\\targetList = 0x195c7f8,

GROUP BY 1; ~—>fromClause = 0x195d000,
> whereClause = 0x195d290,
> groupClause = 0x195d3a@,

<some fields not shown>

}

FROM orders JOIN order_lines ON orders.id = order_lines.order _id (
WHERE orders.orderdateBETWEEN‘2021-11-01’AND‘TODAY’—\\\\\\\\\\\~ type = T _SelectStmt,

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

Raw Parser

SELECT orders.customer_id,
FROM orders JOIN order_lines ON orders.id = order_lines.order _id
WHERE orders.order_date BETWEEN ‘2021-11-01 AND ‘TODAY’
GROUP BY 1;

SelectStmt

{

type = T SelectStmt,

targetList = 0x195c7f8,
fromClause = 0x195d000,
whereClause = 0x195d299,
groupClause = 0x195d3a0,
<some fields not shown>

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

targetList (

{RESTARGET

‘name <>

:indirection <>

:val
{COLUMNREF
:fields ("orders" "customer_id")
:location 7

}

:location 7

}

Raw Parser

SELECT orders.customer_id, SUM(order_lines.price) AS total_amount

FROM

WHERE orders.order_date BETWEEN ‘2021-11-01" AND ‘TODAY’

GROUP BY 1;

orders JOIN order_lines

SelectStmt

type = T SelectStmt,

targetlList = Ox195c7f8,
fromClause = 0x195d000,
whereClause = 0x195d299,
groupClause = 0x195d3a0,
<some fields not shown>

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

fromClause (
{JOINEXPR
:jointype 0
:isNatural false
:larg
{RANGEVAR
:schemaname <>
:relname orders
:inh true
:relpersistence p
:alias <>
:location 71
}
‘rarg
{RANGEVAR
:schemaname <>
:relname order_lines
:inh true
:relpersistence p
:alias <>
:location 83
}
:usingClause <>
;join_using_alias <>

Raw Parser

SELECT orders.customer_id, SUM(order_lines.price) AS total_amount
FROM orders JOIN order_lines ON orders.id = order_lines.order _id
WHERE orders.order_date BETWEEN ‘2021-11-01’ AND ‘TODAY’

whereClause
{AEXPR BETWEEN
:name ("BETWEEN")
lexpr
{COLUMNREF
SeleCtStmt :fields ("orders" "order_date")
:location 138

{ :rt}ex r
type = T SelectStmt, ;{5:1(?&)2052241-01"
targetlList = 0x195c7f8, :location 164
fromClause = 0x195d000, A consT
whereClause = 0x195d290, el Tonev
groupClause = 0x195d3a0, }
<some fields not shown> L ation 156

} }

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

Parse Analyze

e Converts the SelectStmt into Query, a generic container for executable statements, containing

information about the objects mentioned in the query that is stored in the system catalog

e Locks are taken on the tables Query
{
type = T_Query,
SELECT orders.customer_id, SUM(order_lines.price) AS total_amount commandType = CMD_SELECT,
tilityStmt = exe,
FROM orders JOIN order_lines ON orders.id = order_lines.order_id ‘,fe“;uitﬁelf.jtion . 0,
WHERE orders.order_date BETWEEN 2021-11-01" AND ‘TODAY L e i,

~— targetlList = ©@xla2ac40,
sgroupClause = 0x1a43c80,
<some fields not shown>

}

GROUP BY 1;

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

Parse Analyze

SELECT orders.customer_id, SUM(order_lines.price) AS total_amount

FROM orders JOIN ON orders.id = order_lines.order_id
WHERE orders.order_date BETWEEN ‘2021-11-01 AND ‘TODAY’
GROUP BY 1;

Query

type = T_Query,
commandType = CMD_SELECT,
utilityStmt = 0x0,
resultRelation = 0,
rtable = 0x1a29120,
jointree = 0x1a43deo,
targetlList = Oxla2ac49,
groupClause = 0x1a43c890,
<some fields not shown>

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

rtable (
{RANGETBLENTRY

:alias <>
:eref

{ALIAS

:aliasname orders
:colnames ("id" "customer_id" "order_date")

}
:rtekind @
:relid 16384
)

{RANGETBLENTRY
:alias <>
:eref

{ALIAS
:aliasname unnamed_join

:colnames ("id" "customer_id" "order_date" "id"

"item_id" “price")
}
:rtekind 2
:jointype ©
:joinmergedcols @
:joinaliasvars (...)

"order_id"

Parse Analyze

SELECT orders.customer_id,

FROM orders JOIN order_lines ON orders.id = order_lines.order _id
WHERE orders.order_date BETWEEN ‘2021-11-01 AND ‘TODAY’

GROUP BY 1;

targetList (

Query

commandType
utilityStmt

targetList =
groupClause =

type = T _Query,

CMD_SELECT,
0x0,

resultRelation = 9,
rtable = 0x1a29120,
jointree = 0x1a43dee,
©xla2ac40,

©x1a43c80,

<some fields not shown>

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

{TARGETENTRY[varno 1: relation “orders”

:EX?;AR varattno 2: column 2 of “orders”
tvarno 1
:varattno 2
:vartype 23

:resno 1
:resname customer_id

:resjunk false

}

varno 2: relation “order_lines”
varattno 4: column 4 of “order_lines”

Parse Analyze

SELECT orders.customer_id, SUM(order_lines.price) AS total_amount

FROM

WHERE orders.order_date BETWEEN ‘2021-11-01" AND ‘TODAY’

GROUP BY 1;

orders JOIN order_lines

Query

CMD_SELECT,
0x0,

©x1a43c80,

{
type = T _Query,
commandType =
utilityStmt =
resultRelation = 9,
rtable = 0x1a29120,
jointree = 0x1a43doo,
targetlList = Oxla2ac49,
groupClause =
<some fields not shown>
}

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

jointree
{FROMEXPR
:fromlist (
{JOINEXPR
:jointype ©
:isNatural false

:larg i i . Y
{RANGETBLREF4 range table relation 1: relation “orders
:rtindex 1

}

irarg q . « f »
{RANGETBLREF J range table relation 2: relation “order_lines

:rtindex 2

:usingClause <>
:join_using_alias <>

;locatlon 1094 range table relation 3: relation “order” JOIN

:alias <> “order_lines”

:rtindex 3
}
)

:quals

Parse Analyze

SELECT orders.customer_id, SUM(order_lines.price) AS total_amount

. . . . joint — >
FROM orders JOIN order_lines ON orders.id = order_lines.order_id R orders.order_date >= 2021-11-01" AND
orders.order_date <= ‘2021-11-30’

tquals

WHERE orders.order_date BETWEEN ‘2021-11-01’ AND ‘TODAY’ {BOOLEXPR
:boolop and
GROUP BY 1; :ar%cs)Pépr
:opno 1098

:opfuncid 1090
topresulttype 16

Za"%\smé varno 1: relation “orders”
Query -varno 1 varattno 3: column 3 of “orders”
.varattno 3 = ———
:vartype 1082
}
{ {CONST
_ :consttype 1082
type = T_Query, :constv)allue 4[3931000000]
commandType = CMD_SELECT, }
utilityStmt = 6xo,)
resultRelation = 0, {OPEXPR
:opno 1096
rtable = 9X1829129, :opfuncid 1088
° 2 = topresulttype 16
J°1ntr'e"3 0x1a43deo, :args (varno 1: relation “orders”
targetlList = ©@xla2ac40, ﬁ\\::\ﬁno . varattno 3: column 3 of “orders”
gr‘oupCL:ause = Ox1ad3c80, N
<some fields not shown> ;Vaf‘type gos2
} {CONST

:consttype 1082
:constvalue 4 [64 31 000 0 0 0]

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

Parse Analyze

SELECT orders.customer_id, SUM(order_lines.price) AS total_amount
FROM orders JOIN order_lines ON orders.id = order_lines.order_id
WHERE orders.order_date BETWEEN ‘2021-11-01 AND ‘TODAY’
GROUP BY 1;

Query

type = T _Query,
commandType = CMD_SELECT,
utilityStmt = 0xo,
resultRelation = 9,
rtable = 0x1a29120,
jointree = 0x1a43dee,
targetlList = Oxla2ac49,
groupClause = 0x1a43c890,
<some fields not shown>

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

{

:groupClause (

SORTGROUPCLAUSE

:tleSortGroupRef 1
teqop 96

:sortop 97
:nulls_first false

}

hashable true

tleSortGroupRef 1: group by 1st element
of targetlist

Rewrite

e Nothing interesting happens for this query, because there’s no view referenced in the query.
e If one of the relations in the query were a view, the rewrite step would add its query to the range table,

which the planner then integrates into the main query.

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

Planner

e Comes up with an optimal plan for the query and puts that

into a PlannedStmt

e Looks up more information about the objects

o Atable’s file size, statistics, partitions, indexes, foreign

keys, etc.

e All of the working state is maintained in a PlannerInfo

SELECT orders.customer_id, SUM(order_lines.price) AS total_amount
FROM orders JOIN order_lines ON orders.id = order_lines.order_id
WHERE orders.order_date BETWEEN ‘2021-11-01" AND ‘TODAY’
GROUP BY 1;

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

N

Plannerinfo

{ The Query
type = T_PlannerInfo, LD°de
parse = 0x195d6e0,

f/Aglob = 0x1a431a0,
simple rel array = 0x0,
simple rel array size = 0,
simple rte array = 0x0,
all baserels = 0x0,
join_rel list = 0x0,
join_rel hash = 0x0,
eq_classes = 0x0,
query_pathkeys = 0x0,
group_pathkeys = 0x0,
upper_rels = {0x0, 0x0, 0x0, Ox0, Ox0, Ox0, Ox0, OxO},
upper_targets = {0x0, 0x0, 0x0, 0x0, 0x0, O0x0, O0x0, Ox0},
processed tlist = 0x0,
planner_cxt = 0x195ba4e0,
total table pages = 9,
<some fields not shown>

Planner: Pre-processing

e |nitial steps, performed after entering the function

subquery planner(), involve various simplifications of

the query’s expressions, like:

o “pulling up” subqueries into the main query

o Algebraic simplifications of expressions

SELECT orders.customer_id, SUM(order_lines.price) AS total_amount
FROM orders JOIN order_lines ON orders.id = order_lines.order_id
WHERE orders.order_date BETWEEN ‘2021-11-01" AND ‘TODAY’

GROUP BY 1;

“Col + O” _> “Col”

N

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

{

Plannerinfo

Pre-processed Query node

type = T PlannerInfo,

4 parse = 0x195d6e0,

glob = 0x1a431a0,

simple rel array = 0x0,

simple rel array size = 0,

simple rte array = 0x0,

all baserels = 0x0,

join_rel list = 0x0,

join_rel hash = 0x0,

eq_classes = 0x0,

fkey list = 0x0,

query_pathkeys = 0x0,

group_pathkeys = 0x0,

initial rels = 0x0,

upper_rels = {0x0, 0x0, 0x0, Ox0, Ox0, Ox0, Ox0, OxO},
upper_targets = {0x0, 0x0, 0x0, 0x0, O0x0, O0x0, O0x0, Ox0},
processed _tlist = 0x0,

planner_cxt = 0x195ba4e0,

total table pages = 9,

<some fields not shown>

Planner: Scan/Join planning

e Actual planning starts after entering the function grouping_planner(), which
does:

o query_planner(), which creates scan/join Paths for the base relations
and joins, respectively, covering the FROM and WHERE clauses. Scan
planning considers whether or not use an index. Join planning uses a
“dynamic programming” algorithm to incrementally build up the final join
relation. It considers nested loop, hash, and merge join algorithm for each
join relation at each stage of the algorithm.

o RelOptInfo nodes are set up for relations (base and join) to store catalog
info, paths, etc. EquivalenceClass and PathKey nodes are built for

columns and expressions, shared across relations.

SELECT orders.customer_id, SUM(order_lines.price) AS total_amount
FROM orders JOIN order_lines ON orders.id =
order_lines.order_id
WHERE orders.order_date BETWEEN ‘2021-11-01’ AND ‘TODAY’

20 XoRAHPB Yieridisens Corporation Al Rights Reserved

Plannerinfo

{

type = T PlannerInfo,

parse = 0x195d6e0,

glob = 0x1a431a0,
simple_rel_array = 0x1a58fco,
simple_rel_array_size = 4,
simple_rte_array = 0x1a58ff8,
all_baserels = @x1a5ab80,
join_rel_list = @x1a5cbeo,
join_rel_hash = 0xo,
join_cur_level = 2,
eq_classes = 0x1a5a280,

fkey list = @xla5ab28,
query_pathkeys = 0xla5aa50,
group_pathkeys = 0xla5aa50,
initial_rels = Ox1la5c4f8,
upper_rels = {0x0, 0x0, 0x0, Ox0, Ox0, Ox0, Ox0, OxO},
upper_targets = {0x0, 0x0, 0x0, Ox0, Ox0, Ox0, Ox0, OxO},
processed_tlist = O0x1la439a8,
planner_cxt = 0x195ba4e0,
total table pages = 9,

<some fields not shown>

Planner: GROUP BY planning

e Actual planning starts after entering the function grouping_planner(),

which does: Plannerinfo

o Finally back in grouping_planner(), create Paths for GROUP BY,| * G = T Bl e

parse = 0x195d6e0,
glob = 0x1a431a0,
simple_rel_array = 0x1a58fco,
simple_rel_array_size = 4,
. . simple_rte_array = 0x1a58ff8,
grouplng/aggregatlon paths. all _baserels = 0x1a5ab89,
join_rel_list = ©x1a5cbeeo,
join_rel_hash = 0x@,
join_cur_level = 2,
eq_classes = Ox1a5a280,
fkey_list = Oxla5ab28,
query_pathkeys = ©xla5aa50,
group_pathkeys = 0xla5aa50,
initial_rels = @x1a5c4f8,
upper_rels = {0x0, Ox0, Ox1a58178, Ox0, Ox0, Ox0, Ox0, 0x1a587b8},
upper_targets = {0x0, 0x0, 0xla57cf8, Oxla57cf8, Ox1la57cf8,
Oxla57cf8, Ox1a57cf8, Ox1la57cf8},
processed_tlist = O0x1a439a8,
. < planner_cxt = ©x195ba40,
FROM orders JOIN order_lines ON orders.id = total table pages - ©,
<some fields not shown>
}

ORDER BY, aggregation steps to produce “upper rels”, which have

their own RelOptInfo nodes. It considers hash or sort based

SELECT orders.customer_id, SUM(order_lines.price) AS total_amount

order_lines.order_id

WHERE orders.order_date BETWEEN ‘2021-11-01’ AND ‘TODAY’

ZOERQUWRC)BYerp&;DB Corporation All Rights Reserved

Planner: Path

e APathisa plan-time representation of a plan node that is used to compare
alternative implementations to perform a particular execution task, such as
scanning a relation or joining two relations

e Planner creates multiple Paths for any given relation and selects one to

convert into the P1lan

SELECT orders.customer_id, SUM(order_lines.price) AS total_amount
FROM orders JOIN order_lines ON orders.id = order_lines.order_id
WHERE orders.order_date BETWEEN ‘2021-11-01" AND ‘TODAY’
GROUP BY 1;

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

Path
{

type = T_IndexPath,
pathtype = T_IndexScan,
parent = 0x1a44780,
pathtarget = 0x1a449co,
param_info = 0x1a56228,
parallel aware = false,
parallel safe = true,
parallel workers = 0,
rows = 1,

startup_cost = 0.1525,
total_cost = ©.19878378378378381,
pathkeys = ©@x1a55b28

IndexPath

{
path = {
<same as shown above>
}s
indexinfo = @x195d5c8,
indexclauses = @x1a55a50,
indexorderbys = 0x0,
indexorderbycols = 0x0,
indexscandir = ForwardScanDirection,
indextotalcost = 0.16216216216216217,
indexselectivity = 0.00049019607843137254

Planner: Plan

e Once the Paths for all processing steps have been considered and a “best”
path chosen for each step, the best Path tree is converted into a Plan tree.
o APlan tree must contain all the information that will be needed when
actually executing the plan, while throwing away anything that was
only needed during the planning process

e create_plan() does this.

SELECT orders.customer_id, SUM(order_lines.price) AS total_amount

FROM orders JOIN order_lines ON orders.id = order_lines.order_id
WHERE orders.order_date BETWEEN ‘2021-11-01’ AND ‘TODAY’
GROUP BY 1;

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

Plan

{

type = T_HashJoin,

startup_cost = 40.724999999999994,
total_cost = 74.09237499999999,
plan_rows = 9,

plan_width = 8,

parallel aware = false,
parallel safe = true,
async_capable = false,
plan_node_id = @,

targetlist = 0x1a58918,

qual = oxe,

lefttree = 0x1a58458,

righttree = 0x1a592a0,

initPlan = 0x0,
extParam = 0x0,
allParam = 0x0
1
HashdJoin
{
join = {
plan = {
<same as shown above>
Ts

jointype = JOIN_INNER,
inner_unique = true,
joinqual = 0x0
¥
hashclauses = 0x1a590e8,
hashoperators = 0x1a59140,
hashcollations = 0x1a59198,
hashkeys = @x1a591f@

Planner: PlannedStmt

e The final product of the planning process

o Contains the Plan tree and other global information about the query environment.

PlannedStmt
{

type = T_PlannedStmt,
commandType = CMD_SELECT,
queryId = 0,

hasReturning = false,
hasModifyingCTE = false,
canSetTag = true,
transientPlan = false,
dependsOnRole = false,
parallelModeNeeded = false,
jitFlags = o,

planTree = 0x1a59638,
rtable = 0x1a59868,
resultRelations = 0x0,
appendRelations = 0x@,
subplans = 0x0,
rewindPlanIDs = 0x0,
rowMarks = 0x0,
relationOids = 0x1a598cO,
invalItems = 0x0,
paramExecTypes = 0x0,
utilityStmt = oxo,
stmt_location = 0,
stmt_len = 199

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

Planner: EXPLAIN

SELECT orders.customer_id, SUM(order_lines.price) AS total_amount
FROM orders JOIN order_Llines ON orders.id = order_lines.order_id
WHERE orders.order_date BETWEEN ‘2021-11-01 AND ‘TODAY’
GROUP BY 1;

QUERY PLAN
GroupAggregate (cost=74.24..74.39 rows=9 width=8)
Output: orders.customer_id, sum(order_lines.price)
Group Key: orders.customer_id
-> Sort (cost=74.24..74.26 rows=9 width=8)
Output: orders.customer_id, order_lines.price
Sort Key: orders.customer_id
-> Hash Join (cost=40.72..74.09 rows=9 width=8)
Output: orders.customer_id, order_lines.price
Inner Unique: true
Hash Cond: (order_lines.order_id = orders.id)
-> Seq Scan on public.order_lines (cost=0.00..28.50 rows=1850 width=8)
Output: order_lines.id, order_lines.order_id, order_lines.item_id, order_lines.price
-> Hash (cost=40.60..40.60 rows=10 width=8)
Output: orders.customer_id, orders.id
-> Seq Scan on public.orders (cost=0.00..40.60 rows=10 width=8)
Output: orders.customer_id, orders.id
Filter: ((orders.order_date >= '2021-11-01'::date) AND (orders.order_date <= '2021-11-29'::date))
(17 rows)

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

Execution

e Recursively processing the Plan tree to output result rows

o Processing follows a demand-pull pipeline mechanism starting at the top.

o On-disk rows enter through scan nodes at the bottom/leaf.

QUERY PLAN

GroupAggregate (cost=74.24..74.39 rows=9 width=8)
Output: orders.customer_id, sum(order_lines.price)
Group Key: orders.customer_id
-> Sort (cost=74.24..74.26 rows=9 width=8)
Output: orders.customer_id, order_lines.price
Sort Key: orders.customer_id
-> Hash Join (cost=40.72..74.09 rows=9 width=8)
Output: orders.customer_id, order_lines.price
Inner Unique: true
Hash Cond: (order_lines.order_id = orders.id)
-> Seq Scan on public.order_lines (cost=0.00..28.50 rows=1850 width=8)

Output: order_lines.id, order_lines.order_id, order_lines.item_id, order_lines.price
-> Hash (cost=40.60..40.60 rows=10 width=8)

Output: orders.customer_id, orders.id
-> Seq Scan on public.orders (cost=0.00..40.60 rows=10 width=8)
Output: orders.customer_id, orders.id

Filter: ((orders.order_date >= '2021-11-01'::date) AND (orders.order_date <= '2021-11-29'::date))
(17 rows)

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

Execution: InitPlan()

Before the actual execution starts, the P1an tree is “walked” to create a PlanState node for each

Plan nodein the tree

PlanState
{

type = T_HashJoinState,

plan = @x1a54f00,

state = 0Ox1a48c40,

ExecProcNode = @x7ffbdo® <ExecProcNodeFirst>,
ExecProcNodeReal = 0x82dc1@ <ExecHashJoin>,
instrument = 0x0,

worker_instrument = 0x0,
worker_jit_instrument = 0x0,

qual = oxo,

lefttree = 0x1a499b0,

righttree = 0xl1a49ee8,

initPlan = ox0,

subPlan = 0x0,

chgParam = 0x0,

ps_ResultTupleDesc = @xla5ac49,
ps_ResultTupleSlot = @xla5ad58,
ps_ExprContext = 0x1a49918,
ps_ProjInfo = @xla5adfe,
async_capable = false,

scandesc = 0x0,

scanops = 0x0,

outerops 0x0,

innerops = 0x0,

resultops = Oxe4c458 <TTSOpsVirtual>,
scanopsset = false,

outeropsset = false,

inneropsset = false,

resultopsset = true

<some fields not shown>

HashJoinState
{
js = A
ps = {
<same as shown on left>

B

%ointype = JOIN_INNER,

single_match = true,

joinqual = 0x0
¥
hashclauses = 0x1a7f528,
hj_OuterHashKeys = 0x1a80738,
hj_HashOperators = 0xla56el0,
hj_Collations = @x1a56e68,
hj_HashTable = 0x@,
hj_CurHashValue = 0,
hj_CurBucketNo = 0,
hj_CurSkewBucketNo = -1,
hj_CurTuple = 0x0,
hj_OuterTupleSlot = 0x1a7f378,
hj_HashTupleSlot = @x1la5a220,
hj_NullOuterTupleSlot = 0x0,
hj_NullInnerTupleSlot = 0x0,
hj_FirstOuterTupleSlot = 0x0,
hj_JoinState = 1,
hj_MatchedOuter = false,
hj_OuterNotEmpty = false

Execution: ExecutePlan()

e Recursively calls ExecProcNode() on the PlanState nodes contained in the tree

o Result rows are bubbled up and the top node’s result row is returned as the result of the query

QUERY PLAN

roupAggregate (cost=74.24..74.39 rows=9 width=8)
Output: orders.customer_id, sum(order_lines.price)
Group Key: orders.customer_id
-> Sort (cost=74.24..74.26 rows=9 width=8)
Output: orders.customer_id, order_lines.price
Sort Key: orders.customer_id
-> Hash Join (cost=40.72..74.09 rows=9 width=8)
Output: orders.customer_id, order_lines.price
Inner Unique: true
Hash Cond: (order_lines.order_id = orders.id)
-> Seq Scan on public.order_lines (cost=0.00..28.50 rows=1850 width=8)

Output: order_lines.id, order_lines.order_id, order_lines.item_id, order_lines.price
> Hash (cost=40.60..40.60 rows=10 width=8)

Output: orders.customer_id, orders.id
-> Seq Scan on public.orders (cost=0.00..40.60 rows=10 width=8)

Output: orders.customer_id, orders.id

Filter: ((orders.order_date >= '2021-11-01'::date) AND (orders.order_date <= '2021-11-29'::date))
(17 rows)

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

Execution: Returning Result Rows

e Before ExecutePlan() is called, a message describing the result row format is sent to the client, which consists of:
o Message type (Letter ‘T’ for Tuple Descriptor)
o Number of attributes as a 16-bit integer
o Foreach attribute:
m Attribute name (as null terminated string)
m Table OID as 32-bit integer
m Column number as 16-bit integer,
m Typeinformation as 3 integers (32-bit type OID, 16-bit type length, 32-bit type modifier)
m Output format descriptor as 16-bit integer
e Foreach result row, ExecutePlan() sends a message describing the result row format to the client, which consists of:
o Message type (Letter ‘D’ for Data Row)
o Number of attributes as a 16-bit integer
o Foreach attribute:
m Ifnull, a 32-bitinteger value -1
m If non-null, the value in the client-requested format
e By calling the attribute type’s “output” function if the client requested text format

e By calling the attribute type’s “send” function if the client requested binary format

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

Foreign Data Wrappers

e Extend Postgres to access non-Postgres data sources as (“foreign”) tables

o Otherrelational or non-relational databases, CSV files, Hadoop, Twitter timeline, etc.

e The planner API for handling queries mentioning foreign tables

void GetForeignRelSize(PlannerInfo *root, RelOptInfo *baserel, 0id foreigntableid);

void GetForeignPaths(PlannerInfo *root, RelOptInfo *baserel, 0id foreigntableid);

ForeignScan *GetForeignPlan(PlannerInfo *root, RelOptInfo *baserel, 0id foreigntableid,
ForeignPath *best_path, List *tlist, List *scan_clauses,
Plan *outer_plan);

struct ForeignScan

{
Scan scan;
CmdType operation;
Index resultRelation;
0id fs_server;
List *fdw_exprs;
List *fdw_private;
List *fdw_scan_tlist;
List *fdw_recheck_quals;

Bitmapset *fs_relids;

bool fsSystemCol;

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

Foreign Data Wrappers

e The executor API:

void BeginForeignScan(ForeignScanState *node, int eflags);
TupleTableSlot *IterateForeignScan(ForeignScanState *node);
void ReScanForeignScan(ForeignScanState *node);
void EndForeignScan(ForeignScanState *node);
struct ForeignScanState
{

ScanState SS;

ExprState *fdw_recheck_quals;

Size pscan_len;

ResultRelInfo *resultRellInfo;

struct FdwRoutine *fdwroutine;

void *fdw_state;

¥
e Other APIs for DML queries and advanced stuff like joins, aggregation

o Join, aggregation APIs allow “push-down” of those operations to the remote side if supported

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

Custom Scan Providers

e Extend Postgres to make scans/joins to use algorithms not present in the core executor
o For example, use GPU acceleration for join/aggregate computation

e The planner API consists of the following “hook” functions to insert a scan or join CustomPath that the

custom scan module must provide:

typedef void (*set rel pathlist hook type) (PlannerInfo *root, RelOptInfo *rel, Index rti, RangeTblEntry *rte);
typedef void (*set _join_ pathlist hook type) (PlannerInfo *root, RelOptInfo *joinrel,
RelOptInfo *outerrel, RelOptInfo *innerrel,

JoinType jointype, JoinPathExtraData *extra);
typedef struct CustomPath

{
Path path;
uint32 flags;
List *custom_paths;
List *custom_private;
const CustomPathMethods *methods;

} CustomPath;

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

Custom Scan Providers

e The planner API continued: The following function must be provided to convert a CustomPath into the

executable P1lan form:

Plan *(*PlanCustomPath) (PlannerInfo *root, RelOptInfo *rel, CustomPath *best path,
List *tlist, List *clauses, List *custom plans);
typedef struct CustomScan
{
Scan scan;

uint32 flags;

List *custom_plans;

List *custom_exprs;

List *custom_private;
List *custom_scan_tlist;

Bitmapset *custom_relids;
const CustomScanMethods *methods;

} CustomScan;

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

Custom Scan Providers

e The executor API: a function to initialize execution state of a CustomScan in CustomScanState anda

bunch of other support functions that allow the executor to fetch rows using the custom node

Node *(*CreateCustomScanState) (CustomScan *cscan);

typedef struct CustomScanState
{
ScanState ss;
uint32 flags;
const CustomExecMethods *methods;

} CustomScanState;

void (*BeginCustomScan) (CustomScanState *node, EState *estate, int eflags);
TupleTableSlot *(*ExecCustomScan) (CustomScanState *node);
void (*EndCustomScan) (CustomScanState *node);

void (*ExplainCustomScan) (CustomScanState *node, List *ancestors, ExplainState *es);

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

Custom Scan Providers

e Anexample plan containing custom nodes as implemented by PGStrom, a custom scan provider, taken

verbatim from https://heterodb.github.io/pg-strom/operations/

QUERY PLAN

GroupAggregate (cost=1239991.03..1239995.15 rows=27 width=20)
Group Key: t@.cat
-> Sort (cost=1239991.03..1239991.50 rows=189 width=44)
Sort Key: tO.cat

-> Seq Scan on tl1 (cost=0.00..1972.85 rows=103785 width=12)

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

https://heterodb.github.io/pg-strom/operations/

Hooks

e A hook: aninterface provided by the core engine to allow user-written C code being called to augment
the core functionality

e Postgres has 26 hook pointsin total as of vi4

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

Hooks

Client application

SQL (
L

A 4

Raw parser] backend process
\ 4
(0
Parser/analyzer | post_parse_analyze_hook]
\ J
v
Rewriter]
v
4 set_rel_pathlist_hook]
Planner/optimizer| set_join_pathlist_hook | planner_hook |
L | join_search_hook]
i get_relation_info_hook]
v | ExecutorStart_hook]
[Executor | ExecutorRun_hook 1
| ExecutorFinish_hook]
| ExecutorEnd_hook | Result
rows

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

Hooks: examples

e pg_stat_statements, which provides a means for tracking planning and execution statistics of all SQL
statements executed by a server
o To do that, it implements the following hooks:
m planner_hook: to measure and store the planning time duration for a given query
m ExecutorStart_hook: to start “instrumentation” for a given query
m ExecutorRun_/Finish hook: to track query “nesting level” of a given query

m ExecutorEnd_hook: to finish “instrumentation” for a given query

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

Hooks: examples

e Citus, which transforms Postgres into a distributed database

o To do that, itimplements the following hooks:

planner_hook: to plan queries by taking into account that data is distributed across a cluster
of Postgres servers

set _rel pathlist hook: to collect information about a table for distributed planning
set_join_pathlist hook: to collect information about a join for distributed planning
ExecutorStart_hook: to set a global flag to allow writes even on hot standby servers

ExecutorRun_hook: to fix up subplans in a distributed plan before main execution

o Actually, Citus also seems to rely on CustomPath, CustomScan constructs to implement

distributed planning and execution.

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

Summary

e Postgres supports processing SQL queries over relational data.
e An SQL query enters the server as a text string, gets parsed, analyzed, planned, and converted into an

optimal executable plan, whose execution produces the result rows that are returned to the client.

e The default query processing behavior can be augmented using a number of extension APls and hook

points.

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

References

e A Tour of PostgreSQL Internals (Tom Lane): https://www.postgresgl.org/files/developer/tour.pdf

e Bruce Momjian’s presentations: https://momjian.us/main/presentations/

e PostgreSQL source code: https://doxygen.postgresgl.org/

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

https://www.postgresql.org/files/developer/tour.pdf
https://momjian.us/main/presentations/
https://doxygen.postgresql.org/

