
PostgreSQL
Performance
Tuning and
Optimization
Devrim Gündüz
Dave Page

October 2021

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.2

Agenda

• Who is EDB?

• Designing the hardware

• Tuning the operating system

• Tuning PostgreSQL parameters

• Query tuning

• Partitioning

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.3

Who is EDB?

1986
The design
of PostgreSQL

1996
Birth of
PostgreSQL

2004
EDB
is founded

2021
EDB acquires
2nd Quadrant

Materialized
Views

Parallel
Query

JIT
Compilation

Heap Only
Tuples (HOT)

Serializable
Parallel Query

2007
2ndQuadrant
launched

Logical
Replication

Transaction
Control

Hot
 Standby

Generated
Columns

We’re database fanatics who care deeply about PostgreSQL
• Largest dedicated PostgreSQL company
• Enterprise PostgreSQL innovations
• Major PostgreSQL community leadership

EDB supercharges PostgreSQL

Designing the
hardware: Bare
metal

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.5

• Which CPU’s suit PostgreSQL more?

• CPU caches

• L1 and L2 cache

• L3 cache

Hardware design (Bare metal): CPU

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.6

• Depends on the application
• Read intensive / write intensive / mixed load

• RAID and PostgreSQL
• RAID 1 (or 10) for WAL

• RAID 10 for data

• Tablespaces
• Slower/cheaper drives for archive data

Hardware design (Bare metal): Disk

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.7

• Cheapest component
• Go as big as you can

• Cache
• More cache, less I/O

• Hotswap RAM
• Avoid downtime for upgrades/replacements

• Expensive!

Hardware design (Bare metal): RAM

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.8

• May sound irrelevant

• Faster network -> faster data transfer
• Also, faster replication

Hardware design (Bare metal): Network

Designing the
hardware:
Virtual
machines

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.10

• Para-virtualisation vs. full

• Dedicated hardware

• Noisy neighbours!

• Choose instance types carefully:
• Number of cores

• RAM

• Network throughput

• NUMA pinning
• Pin VMs to specific CPUs where possible

Hardware design (Virtual): Virtual machine

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.11

• Pre-allocation of disks

• RAID
• No performance benefit using Linux MDRAID over multiple AWS EBS devices in our testing

• There may be benefits in other environments; it depends on the network/storage architecture

• Dedicated IOPs
• Provision storage with guaranteed IOP performance

Hardware design (Virtual): Disk

Tuning the
operating
system

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.13

• Dynamic adaptive system tuning daemon

• RHEL’s default tuning mechanism

• Optional for Debian/Ubuntu

• Anaconda (the RHEL installer) picks up a good default

• Needs some manual configuration

• Demo!

tuned (Adaptive system tuning daemon)

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.14

• Huge pages allow allocation of much larger blocks of memory

• As the data grows more, PostgreSQL will cache more GBs of data in RAM

• Default page size: 4kB

• Disabled by default

• Requires a restart (of PostgreSQL)

• Demo!

Huge pages

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.15

• Get more from the filesystem
• “Noatime”

• PostgreSQL does not rely on file access time

• Disabling it saves CPU cycles

Optimizing filesystem

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.16

• Several options available

• XFS is the most popular (and default on major OSes)

• Do not turn off journaling

• Btrfs is not quite there *yet*

Filesystem type selection

PostgreSQL
tuning starting
points

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.18

• Many of the default parameters are not suitable for production usage
• Default config is designed to "run anywhere", e.g R-Pi, POS machines.

• Some parameters should always be changed

• A great way to improve performance

PostgreSQL tuning

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.19

• max_connections
• Rule of thumb: Not more than needed, to reduce the size of pre-allocated data structures

• In an ideal world matches the number of CPU cores, but often 2:1 or 4:1
• Consider using a pooler if there's a need for hundreds of connections

PostgreSQL tuning: Connections

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.20

• shared_buffers
• Main 'database cache'. Depends on RAM, no more than 50% of what's available

• work_mem
• 'Working' memory for queries. This is per sort/hash table operation, so be careful

• maintenance_work_mem
• Memory used for maintenance operations such as VACUUM. Depends on the available RAM, but

usually 1-4 GB

• autovacuum_work_mem
• -1 uses maintenance_work_mem

• effective_io_concurrency
• Number of IO operations that can be expected to execute in parallel

• Depends on the drives, usually a few hundred for SSDs and NVMe drives

PostgreSQL tuning: Resource usage

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.21

• wal_compression
• Set this to on in most cases, to reduce I/O at the cost of some CPU

• wal_log_hints
• Log hint bits in WAL. Useful for pg_rewind, so always “on”

• wal_buffers
• The amount of shared memory used for un-written WAL data. 64MB is recommended (4 WAL files)

• checkpoint_completion_target
• The target checkpoint completion time, as a fraction of the time between checkpoints

• 0.5 by default prior to v14

• 0.9 as of v14, and use that value for all Postgres versions

PostgreSQL tuning: WAL

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.22

• checkpoint_timeout
• Maximum time between checkpoints

• Depends on the database load. Longer timeout may end up with longer recovery times, lower

values may end up with more I/O (and also full page writes)

• max_wal_size
• Causes a checkpoint once X MB of WAL has been written

• Set this to a value high enough so that Postgres will checkpoint because of checkpoint_timeout.

• Soft limit

PostgreSQL tuning: WAL

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.23

• seq_page_cost
• Cost of reading a page sequentially from disk

• random_page_cost
• Cost of reading a random page from disk

• Faster drives -> lower costs

• cpu_tuple_cost
• Cost of processing one row (tuple) in a query

• Start with 0.03

• effective_cache_size
• A “hint” to the query planner, not a “reserved” space unlike shared_buffers

• Usually 50% - 75% of the available RAM

PostgreSQL tuning: Query tuning

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.24

• idle_in_transaction_session_timeout
• Used to terminate sessions that remain idle in a transaction for too long

• Avoids locks and maintenance issues

• shared_preload_libraries
• pg_stat_statement: very, very useful for monitoring/tuning queries

PostgreSQL tuning: Client connection defaults

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.25

• log_autovacuum_min_duration
• Logs autovacuum durations

• 0 logs all of them

• autovacuum_max_workers
• More workers -> more frequent vacuum/analyse

• 5 as a starting point

• autovacuum_vacuum_cost_limit
• Useful for throttling autovacuum/autoanalyze

• 3000 is a good starting point.

PostgreSQL tuning: Autovacuum

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.26

• log_temp_files
• Useful for logging temp files, caused by lack of work_mem parameter.

• log_checkpoints
• Useful for processing checkpoint performance. Set to on.

• timed_statistics (EPAS-only)
• DRITA: Dynamic Runtime Instrumentation Tools Architecture

• Set this to on.

PostgreSQL tuning: Reporting and logging

Fine tuning
based on
workload
analysis

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.28

• How to find slow queries
• log_min_duration_statement

• pg_stat_statements

• pgbadger

Finding slow queries

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.29

• Expressions can prevent use of indexes. Don't use:

SELECT * FROM t

WHERE t.a_timestamp + interval '3 days' < CURRENT_TIMESTAMP

Instead, use naked columns:

SELECT * FROM t

WHERE t.a_timestamp < CURRENT_TIMESTAMP - interval '3 days'

Rewriting queries

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.30

• Other patterns to review and fix:
• SELECT … WHERE x NOT IN (SELECT …)

• Imprecise joins in queries, "fixed" with DISTINCT

• GROUP BY least complex types before more complex types for efficiency

• Unnecessary use of CTEs prior to PostgreSQL 12

Rewriting queries

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.31

• One of the best friends of a PostgreSQL DBA!

• Use it!

• Don’t forget to use inside a BEGIN...ROLLBACK block :-)

EXPLAIN (ANALYZE)

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.32

• pgAdmin 4 and Postgres

Enterprise Manager have

a nice GUI for EXPLAIN

(ANALYZE)

EXPLAIN (ANALYZE)

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.33

EXPLAIN (ANALYZE)

• pgAdmin 4 and Postgres

Enterprise Manager have

a nice GUI for EXPLAIN

(ANALYZE)

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.34

EXPLAIN (ANALYZE)

• pgAdmin 4 and Postgres

Enterprise Manager have

a nice GUI for EXPLAIN

(ANALYZE)

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.35

• Avoid, or at least try to eliminate:
• Bad estimates

• External sorts

• Hash batches

• Heap fetches

• Lossy bitmap scans

• Wrong plan shapes

EXPLAIN (ANALYZE)

Partitioning

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.37

• Why/when do we need partitioning?
• Maintenance

• Parallelization

• Use cases

• Types of partitioning in PostgreSQL

• Automatic partitioning in EPAS
• Demo!

Partitioning

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.38

• Why/when do we need partitioning?
• Maintenance

• Parallelization

• Use cases

• Types of partitioning in PostgreSQL

• Automatic partitioning in EPAS
• Demo!

Partitioning

Conclusion

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.40

• Hardware, operating system and PostgreSQL are the 3 main legs of tuning

• Getting more from the database is an ongoing process

• Make use of tools such as pgAdmin, PEM, pgBadger etc.

• Each new major version adds new parameters and features

• Keep up2date with minor versions

Conclusion

Questions?

Additional Reading:

PostgreSQL Performance Tuning and Optimization

by Vik Fearing with Devrim Gündüz and Dave Page

https://www.enterprisedb.com/postgres-tutorials/introductio
n-postgresql-performance-tuning-and-optimization

For companies committed to open source PostgreSQL and
tools: new EDB Community 360 Plan (includes break/fix).

Email community360@enterprisedb.com for details.

https://www.enterprisedb.com/postgres-tutorials/introduction-postgresql-performance-tuning-and-optimization

